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1. Introduction 
 
It is well known that the propagation of optical pulses 

in a monomode optical fiber is described by the nonlinear 
Schrödinger (NLS) equation with cubic and higher 
nonlinearity. Studying the properties of the NLS family of 
equations has grown steadily in recent years because of 
their potential applications in many fields of physics, 
including nonlinear optics, water waves, Bose-Einstein 
condensates, biomolecular dynamics, and nonlinear 
quantum field theory [1-20]. For picosecond light pulses, 
this model includes only the group velocity dispersion 
(GVD) and the self-phase modulation, and it admits bright 
and dark soliton-type pulse propagation in anomalous and 
normal dispersion regimes, respectively [8]. The unique 
property of optical solitons, either bright or dark, is their 
particle-like behavior in interaction [9]. 

Early works mostly concentrated on Kerr-type media, 
where the refractive index varies linearly with the pulse 
intensity I  as 0 2 ,n n n I   with 0n  and 2n being the 

linear refractive index coefficient and the cubic 
nonlinearity coefficient which is related to the third-order 

susceptibility  3   as  3
2 03 8 ,n n  respectively. To 

enlarge the information carrying capacity, it is necessary  
to transmit ultrashort optical pulse of subpicosecond 

and femtosecond size [10]. To produce ultrashort pulses, 
the intensity of the incident light field increases, which 

leads to non-Kerr nonlinearities, changing the physical 
feature of the system [11]. 

It is interesting that the propagation of ultrashort 
pulses in dual-power law media can be described by the 
following NLS equation in (1+2) dimensions [12]-[15]: 
 

   2 41
0,

2
m m

t xx yyiq q q q k q q                     
(1) 

 
where  , ,q x y t  is the complex envelope of the electric 

field, and k  is a constant. 
In this equation, the first term represents the evolution 

term, the second and third terms, in parenthesis, represent 
the dispersion in  x  and y  directions while the fourth and 

fifth terms in parenthesis together represents nonlinearity. 
Knowledge of the exact traveling wave solutions to 

the NLS equation and its extensions is important from 
many points of view (e.g., for the calculation of certain 
important physical quantities analytically as well as 
serving as diagnostics for simulations). In the following 
we propose specific ansatz solutions for obtaining novel 
exact solutions of Eq. (1). We particularly find new types 
of exact soliton solutions of the bright, dark and singular 
type under certain parametric conditions. 
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2. Mathematical analysis 
 
We start the analysis by assuming a solution given by 

the following phase amplitude format [15, 16] 
 

 ( , , ) , , ,iq x y t P x y t e                             (2) 

 
where P is the amplitude portion while   is the phase 
portion of the soliton. It is also assumed that [15, 17] 
 

  1 2, ,x t x x t                               (3) 

 
where   1   and  2  represents the soliton frequency in the 

x  and y directions respectively, while   represents the 

solitary wave number and finally    is the phase constant 
of the soliton. 

Substituting (2) in (1) and separating out the real and 
imaginary parts, yields the following pair of relations: 
 

1 2 0,
P P P

t x y
   

  
                               (4) 

and 
 

 
2 2

2 2
1 2 2 2

2 1 4 1

1 1 1

2 2 2

0.m m

P P
P

x y

P kP

  

 

         
  

               (5) 

 
For obtaining closed form solutions for these 

equations, we propose new ansatz solutions that are 
different from the one used in Ref. [12] as follows: 
 
(i)  A 2cosh  ansatz: 
 

 2
,

cosh
p

A
P

D 



                          (6) 

(ii)  A 2sinh  ansatz: 
 

 2
,

sinh
p

A
P

D 



                          (7) 

(iii) A combined cosh sinh  ansatz: 
 

 
,

cosh sinh
p

A
P

D    


 
                    (8) 

(iv) A tanh ansatz: 
 

 tanh ,
p

P                                      (9) 

where 
 

1 2 .B x B y vt                                        (10) 

 
Here in (6)-(9), A  is the amplitude of the soliton, 1B  is 

the inverse width in the x -direction and 2B  is the inverse 

width in the y -direction and v  represents the velocity of 

the soliton. Also the exponent p  will be determined in 

terms of m and the constants , , , ,A D     and   will also 

be determined in terms of 1,k B  and 2B .  

By employing these ansatz solutions we will obtain 
new structures illustrating the potentially rich set of soliton 
solutions for the nonlinear Schrödinger equation with 
dual-power law nonlinearity. To our knowledge, the 
ansatze (6)-(9) have not been previously used to obtain 
exact analytic soliton solutions of the NLS equation in (2 
+1) dimensions with dual-power law nonlinearity equation 
(1). 

 
2.1. Soliton solutions 
 
In this section, we will use the ansatze presented 

above to develop soliton solutions to the NLS equation 
with dual-power law nonlinearity (1). 

 
2.1.1. Ansatz-I 
 
Let us first apply the rational ansatz I for solving Eqs. 

(4) and (5). Using (6) and (10), Eq. (4) reduces to 
 

 
 

 
1 1 2 2

1 12 2

cosh sinhcosh sinh
0,

cosh cosh
p p

Ap B BApv

D D

    

 
 


 

 
       (11)  

while (5) reduces to 
 

 
 

 
  
 

  
   

   
 

  
 

     

2 2
1 2

2

22 2
11

12 2

2 2 2
1 2

22 2

2 2
2 2

1 22 2

2 1 4 1

2 1 42 2

1

2 cosh

2 1 2 12

cosh cosh

2 1 1 2

cosh cosh

2 1 2 1 2 1 1

cosh cosh

cosh cosh

p

p p

p p

p p

m m

p m p m

A

D

p p D ABp AB

D D

Dp p D AB p AB

D D

p p D AB Dp p D AB

D D

A kA

D D

  


 

 

 

 





 

 

 

    
  

 
 

 

 
 

 

   
 

 

 
 

 1
0.

       (12) 

 
From (11), it can be seen that 

 

1 1 2 2 ,v B B                                  (13) 

 
Notice that in order to compensate for the dispersive 

effects with nonlinearity, the following analytical 
condition must hold 
 

1
,

2
p

m
                                           (14) 

 
which can be obtained by equating the 
exponents (4 1)m p  and 2p  in (12). This same value of 

p is recovered, when the exponents (2 1)m p and 

1p  are set equal to one another. Also noting that the 

functions  21 cosh
p j

D 


 for 0,1j   and 2  are 
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linearly independent, their respective coefficients in (12) 
must vanish. Therefore, these yield the following relations: 
 

 2 2 2 2 2
1 2 1 22

1
,

2
B B m

m
                               (15) 

 

    1 2
2 2

1 2

2

1 2 1
,

2

m

m D B B
A

m

   
 
  

                      (16) 

and 
 

 
     

2

22 2 2
1 2

2 11
1 ,

2 2 1 2 1

m m
D

m m k m B B

   
     

            (17) 

 
Now from (17), the domain restriction of D  implies 

 

 
   

2

2 2 2
1 2

2 1
, ,

2 1

m m
k

m B B

    
   

                      (18) 

 
which shows that solitons for the NLSE in 1+2 dimensions 
in a parabolic law regime exists for k to lie in the 
neighborhood given in (18). Thus, finally, the new bright 
soliton solution of (1) is given by 
 

 
 

 1 2

1 22
1 2

, ,
cosh

,

m

i x x t

A
q x y t

D B x B y vt

e       


    



                     (19) 

 
where the amplitude A  is related to the widths 1B  and 2B  

as given by (16), the wave number   is given by (15) and 
the velocity is given by (13). 
 

2.1.2. Ansatz-II 
 
Let us now consider the rational ansatz II for solving 

Eqs. (4) and (5). Using (7) and (10), Eq. (4) reduces to 
 

 
 
 
1 1 2 2

1 12 2

2 cosh sinh2 cosh sinh
0,

sinh sinhh
p p

Ap B BApv

D D

    

 
 


 

 
         (20) 

 
while (5) reduces to 
 

 
 

 
   
 

  
   

   
 

  
 

     

2 2
1 2

2

22 2
11

12 2

2 2 2
1 2

22 2

2 2
2 2

1 22 2

2 1 4 1

2 1 42 2

1

2 sinh

2 1 2 12

sinh sinhh

2 1 1 2

sinh sinh

2 1 2 1 2 1 1

sinh sinh

sinh sinh

p

p p

p p

p p

m m

p m p m

A

D

p p D ABp AB

D D

Dp p D AB p AB

D D

p p D AB Dp p D AB

D D

A kA

D D

  


 

 

 

 





 

 



    
  

 
 

 

 
 

 

   
 

 

 
 

 1
0.




      (21) 

 
 

By virtue of balancing principle, on equating the 
exponents (4 1)m p and 2p  , from (21), gives 

1
.

2
p

m
                                        (22) 

 
Now (20) gives 
 

1 1 2 2.v B B                                (23) 

 
Then, from (21) by equating the coefficients of the 

linearly independent functions  21 sinh
p j

D 


 for 

0,1j   and 2 to zero yields the relations 

 

 2 2 2 2 2
1 2 1 22

1
,

2
B B m

m
                          (24) 

 

    1 2
2 2

1 2

2

1 2 1
,

2

m

m D B B
A

m

   
 
  

                 (25) 

 
and 
 

 
     

2

22 2 2
1 2

2 11
1 ,

2 2 1 2 1

m m
D

m m k m B B

   
     

              (26) 

 
Now from (26), the domain restriction of D  implies 

 

 
   

2

2 2 2
1 2

2 1
, .

2 1

m m
k

m B B

    
   

                       (27) 

 
Hence, finally, the new singular-type soliton solution 

to (1) is given by 
 

 
 

 1 2

1 22
1 2

, ,
sinh

,

m

i x x t

A
q x y t

D B x B y vt

e       


    



               (28) 

 
where the amplitude A  is related to the widths 1B  and 2B   

as given by (25), the wave number   is given by (24) and 
the velocity is given by (23). 
 

2.1.3. Ansatz-III 
 
Now we take the rational ansatz III for solving Eqs. 

(4) and (5). Using (8) and (10), Eq. (4) reduces to 
 

 
 

   
 
1 1 2 2

1 1

sinh cosh sinh cosh
0,

cosh sinh cosh sinh
p p

Apv Ap B B

D D

         

        

  
 

   
                    

(29) 
 
while (5) reduces to 
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 
 

 
 

 
   

   
 

 
   

2 2
1 2

22 2
11

1

2 2 2 2 2 2
1 2

2

2 2 2 22
22

1

1

2 cosh sinh

2 1

2 cosh sinh 2 cosh sinh

1

2 cosh sinh 2 cosh sinh

12 1

2 cosh sinh 2

p

p p

p p

p

A

D

ADB p pAB p

D D

AB p p D AB p

D D

AB p p DADB p p

D D

  
   

       

 

       

 

    







    
   


 

   

  
 

   

  
 

   

       

2

2 1 4 1

2 1 4 1

cosh sinh

0.
cosh sinh cosh sinh

p

m m

p m p m

A kA

D D

  

       



 

 



  
   

                       

(30) 
 

By balancing principle, we obtain 
 

1
.

2
p

m
                                        (31) 

Now (29) gives 
 

1 1 2 2.v B B                                   (32) 

 
Now from (30), setting the coefficients of the linearly 

independent functions  1 cosh sinh
p j

D        to zero, 

where 0,1,2,j   gives 

 

 2 2 2 2 2
1 2 1 22

1
4 ,

8
B B m

m
                                (33) 

 

   1 2
2 2

1 2

2

1
,

4

m

D m B B
A

m

  
 
  

                               (34) 

and 
 

  
     

1 2
2 2 2

22 2 2
1 2

2 2 1
,

2 2 1 1

m m
D

m m k m B B

   
 
     

                  (35) 

 
Now from (35), the domain restriction of D  implies 

 

 
   

2

2 2 2
1 2

2 2 1
, .

1

m m
k

m B B

    
   

                              (36) 

 
Hence, finally, the new bright-type soliton solution to 

(1) is given by 
 

 
   

 1 2

1 2

1 2 1 2

, ,
cosh sinh

,

m

i x x t

A
q x y t

D B x B y vt B x B y vt

e    

 
   


       



                                                                                                                            

                                                                                       (37)    
      
where the amplitude A  is related to the widths 1B  and 2B  

as given by (34), the wave number   is given by (33) and 
the velocity is given by (32). 
 
 
 
 

2.1.4. Ansatz-IV 
 
Now we take the ansatz IV for solving Eqs. (4) and 

(5). Using (9) and (10), Eq. (4) reduces to 
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(38) 
 
while (5) reduces to 
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







     
 

   
 
     
     
 
   
 
   
 

  

   

   

  
  

       

1

2 2

1

2

2 1 4 1

2 3 tanh

2 2 1 tanh

1 tanh

tanh tanh 0.

p

p

p

p m p m

p

p

p

k

    

   

  

     







 

 
 
 
 
    
 
   
 
   
 

    

            (39)               

                    
Proceeding as before, we obtain 

 
1

,
2

p
m

                                                     (40) 

1 1 2 2 ,v B B                                             (41) 

 2 2 2 2 2
1 2 1 22

1
,

2
B B m

m
                          (42) 

  2 2
1 2

2

1
,

2

m B B

m
 

 
                               (43) 

and 
 

 
   

2

2 2 2
1 2

2 1
.

2 1

m m
k

m B B




 
                              (44) 

 
For this case, the novel dark solution to (1) is given by 
 

     1 2
1 21 2

1 2, , 1 tanh ,
m i x x tmq x y t B x B y vt e                  (45) 

      
where the free parameters   and   are given by (43) 

while the velocity and the wave number are given by (41) 
and (42), respectively. 
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3. Conclusion 
 
In conclusion, we have obtained new analytical 

soliton solutions for the nonlinear Schrödinger equation 
with dual-power law nonlinearity in (2+1) dimensions by 
means of specific ansatze. Bright, dark and singular 
envelope solutions of the model have been derived by 
adopting four types of ansatz solutions. The soliton 
parameters are determined in term of the physical 
parameters involved in the governing equation. Conditions 
for the existence of propagating envelopes have also been 
reported. These solutions are helpful for understanding 
physical phenomena arising in dual-power law media. 
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